Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome ; 11(1): 230, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858205

RESUMEN

BACKGROUND: Shrimp cultured in a biofloc system (BFS) have a lower disease incidence than those farmed in a water exchange system (WES). Although a number of studies have reported that the gut bacterial community induced by BFS is highly associated with shrimp disease resistance, the causal relationship remains unknown. Here, the promotive roles of gut bacterial community induced by BFS in pathogenic Vibrio infection resistance and its potential micro-ecological and physiological mechanisms were investigated by gut bacterial consortium transplantation and synthetic community (SynCom) construction. RESULTS: The BFS induced a more stable and resistant gut bacterial community, and significantly enriched some beneficial bacterial taxa, such as Paracoccus, Ruegeria, Microbacterium, Demequina, and Tenacibaculum. Transplantation of a gut bacterial consortium from BFS shrimp (EnrichBFS) greatly enhanced the stability of the bacterial community and resistance against pathogenic V. parahaemolyticus infection in WES shrimp, while transplantation of a gut bacterial consortium from WES shrimp significantly disrupted the bacterial community and increased pathogen susceptibility in both WES and BFS shrimp. The addition of EnrichBFS in shrimp postlarvae also improved the pathogen resistance through increasing the relative abundances of beneficial bacterial taxa and stability of bacterial community. The corresponding strains of five beneficial bacterial taxa enriched in BFS shrimp were isolated to construct a SynComBFS. The addition of SynComBFS could not only suppress disease development, but also improve shrimp growth, boost the digestive and immune activities, and restore health in diseased shrimp. Furthermore, the strains of SynComBFS well colonized shrimp gut to maintain a high stability of bacterial community. CONCLUSIONS: Our study reveals an important role for native microbiota in protecting shrimp from bacterial pathogens and provides a micro-ecological regulation strategy towards the development of probiotics to ameliorate aquatic animal diseases. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Vibriosis , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/fisiología , Penaeidae/microbiología , Bacterias , Vibriosis/prevención & control , Acuicultura
2.
J Biotechnol ; 344: 50-56, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34973970

RESUMEN

Bioflocculant may be a promising bioactivator for heavy metal removal duo to its eco-friendly properties and remarkable ability to adsorb heavy metals. In this study, bioflocculant production from a bacterium, Pseudomonas sp. GO2, was optimized and its removal efficiency for two heavy metal ions was evaluated. Results demonstrated that the maximal flocculation efficiency was achieved with concentration levels of 5 g/L glucose, 3 g/L casein, and 5 g/L NaCl, with an initial pH of 9.0, and a fermentation time of 48 h. Bioflocculant produced by GO2 had a stronger removal efficiency for Cd2+ than that of Pb2+, with highest removal efficiencies of 85.38% and 80.87%, respectively. The adsorption process was mainly dependent on the monolayer and chemisorption based on the adsorption isotherm and kinetic models. This study demonstrated that bioflocculant produced by the GO2 strain has the potential to be used in heavy metal treatment from industrial wastewater.


Asunto(s)
Metales Pesados , Pseudomonas , Adsorción , Floculación , Concentración de Iones de Hidrógeno , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...